02	31.05.2023	Re-issu	ed for acce	ptance		HR	BGH	ØF	
01	26.05.23	Issued	for accepta	nce		HR	BGH	ØF	
Rev.	Rev. Date	Descriptio	n			Prepared	Checked	Approved	
Date	I	Space rese	erved for supplie	er's certifie	ed stamp	CLIENT STATUS			
Certifie	d by:					1 □ Accep 2 □ Accep		ats incorporated	
	: 16MVA – GAR-F	1001					ted with comment ccepted revise an		
	r Document No.	1001		Area	System	4 🗆 For in	formation		
	41-5284-E-KA-OC	05		Area	System	Date:			
Tag No.		PO No.							
						Signature			
Custom	PSV ner logo/Name	∨ F					ΜΑΤΙΟ	N	
			H K	A R		NE FT			
Docum	ent title								
	Cor	npati	bility a	sses	smen	t HVSC G	6AR-H001		
		Total No. of sheets:				PSW Document N	umber:		
Installa GA	ation: R-H001	10			22974	11-5284-6	-KA-0005		

PSW POWER & AUTOMATION

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:	PSW Project no. 229741/5284	Doc No: 229741-5284	-E-KA-0005
GAR-H001 – 16MVA HVSC			

Contents

1.	Do	ocument Purpose	2
2.	Sh	nort description	2
3.	Pe	ersons in Charge	3
4.	Со	ompatibility assessment procedure	4
Z	1.1.	Compliance	4
Z	1.2.	Short-circuit current	4
Z	1.3.	Inrush current	4
Z	1.4.	Nominal voltage ratings	5
	4.4	4.1. Nominal voltage	5
	4.4	4.2. Frequency	5
	4.4	4.3. Phase sequence	5
Z	1.5.	Voltage variations, current inrush, and overloads	5
Z	1.6.	Equipment impulse withstand voltage.	5
Z	1.7.	Harmonic characteristics	5
Z	1.8.	Communication and control voltages	6
Z	1.9.	Earthing	7
	4.9	9.1. Ship earth fault	7
	4.9	9.2. Transformer neutral earthing	8
	4.9	9.3. Functioning of ship earth fault protection, monitoring and alarms when connected to a HVSC supply	8
Z	1.10.	. Cable management	8
	4.1	10.1. Cable tension monitoring	9
	4.1	10.2. Needed Cable length onboard – from hatch to shipside sockets	9
Z	1.11.	. Galvanic isolation	10
Z	1.12.	. Bonding monitoring	10
Z	1.13.	. Location and construction	10
Z	1.14.	. Hazardous areas	10

CUSTOMER:	PO no.	Project no. 5284	Date:
HAVNEKRAFT AS	229741		31.05.23
PROJECT:	PSW Project no.	Doc No:	-Е-КА-0005
GAR-H001 – 16MVA HVSC	229741/5284	229741-5284	

1. DOCUMENT PURPOSE

A step-by-step procedure for a compatibility assessment to verify compatibility between ship and the High Voltage Shore Connection (HVSC) system, according to IEC 80005-1 section 4.3.

This assessment is only needed the very first time before a ship connects to the HVSC system or if the ship or HVSC has changed.

2. SHORT DESCRIPTION

The HVSC system is designed to convert electric power to desired voltage level and frequency to a cruise vessel. 6.6kV / 11kV and 50/60 Hz. The system is made from four converter units that combined can power 16 MVA. For a short timeframe, the system can deliver 150% (2 sec.) and 125% (2min). The connection point to the system is one of the three shore cabinets. Only two of the three shore cabinets can be supplied at a time.

Nominal ratings at 11 kV: 16 MVA Nominal rating at 6.6 kV: 12 MVA

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:	PSW Project no. 229741/5284	Doc No: 229741-5284-E	-KA-0005
GAR-H001 – 16MVA HVSC			

3. PERSONS IN CHARGE

In this section the persons in charge from both ship and shore signs that the below procedure is followed, and all relevant boxes are checked. If a step is excluded a comment must be made next to the line or in section 5.1.

From Ship

•	Name:	
•	Company:	
•	Date:	
•	Signature:	

From Shore

•	Name:	Odd Arild Lokna
•	Company:	Havnekraft AS
•	Date:	
•	Signature:	

Ship Information

Ship's name:
Ships IMO no.:
Date:

CUSTOMER:	PO no.	Project no.	Date:
HAVNEKRAFT AS	229741	5284	31.05.23
PROJECT	PSW Project no	Doc No:	

PROJECT:	PSW Project no.	Doc No:
	229741/5284	229741-5284-E-KA-0005
GAR-H001 – 16MVA HVSC		

4. COMPATIBILITY ASSESSMENT PROCEDURE

4.1. Compliance

Are the HVSC and the ship in compliance with IEC 80005-1 and what deviations from its recommendations might there be:

☑ HVSC in compliance □ HVSC not in compliance

□ Ship in compliance □ Ship not in compliance

Deviations from IEC 80005-1 recommendations:

4.2. Short-circuit current

What is the minimum and maximum prospective short-circuit current calculations (see IEC 61363-1) for the

HVSC and ship installations:

HVSC prospective short-circuit current:	Max	1366	А	Min	1183	А
Ship prospective short-circuit current:	Max		A	Min		A

System prospective short-circuit current limits shall be within 25 kA RMS.

4.3. Inrush current

Do the ship have means to prevent large loads from starting if they would trigger a failure and/or do the system reduce inrush current:

□ Inrush limiting □ Start prevention

What are the ship limits of the inrush and/or start prevention:

Max inrush current: A

Max start prevention current: A

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:	PSW Project no. 229741/5284	Doc No: 229741-5284-E	-KA-0005
GAR-H001 – 16MVA HVSC			

4.4. Nominal voltage ratings

	4.4.1.	Nominal voltage		
HVSC nomi	nal voltage	:	🛛 6,6 kV	🛛 11 kV
Ship nomin	al voltage:		□ 6,6 kV	🗆 11 kV

Nominal voltage output from the HVSC system can be changed to match the ship.

	4.4.2.	Frequency		
HVSC opera	ting frequ	ency:	🛛 60 Hz	🛛 50 Hz
Ship operati	ing freque	ency:	🗆 60 Hz	🗆 50 Hz

Frequency of the HVSC system can be changed to match the ship.

4.4.3. Phase sequence

HVSC phase sequence: Counterclockwise (L1 - L2 - L3), (A - B - C).

4.5. Voltage variations, current inrush, and overloads

The HVSC system will adjust the delivered voltage and deliver the same voltage at full load and no load. Maximum variations are ±9% for 2s, and ±20% for 0,05s. If the variations exceed these limits, the system will shut down the power.

The HVSC system can handle 50% overload for 2 seconds, and 25% overload for 2 minutes. Exceeding this will result in a failure and trip the system. Ship must show consideration and avoid larger in-rush currents and overloads that could result in failure/trip.

4.6. Equipment impulse withstand voltage.

Ship equipment impulse withstand voltage: kν

75 HVSC system equipment impulse withstand voltage: kν

4.7. Harmonic characteristics

☑ The harmonic distortion limits for the HVSC system voltage at no-load condition are below 3 % single harmonics and 5 % for THD. Above 25th harmonic limits are given in IEC 80005-1 section 5.2

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:	PSW Project no. 229741/5284	Doc No: 229741-5284-E	-KA-0005

GAR-H001 – 16MVA HVSC

4.8. Communication and control voltages

Which communication and control voltages are available for:

HVSC:	⊠ 110VDC	🛛 24VDC

Ship: \Box 110VDC \Box 24VDC

Other means of communication:

Which control signals are supported by the 24VDC connector:

Ship:	HVSC:		Pins:
	\boxtimes	Permission to close 6,6 kV **	1, 2
	\boxtimes	Ground relay check **	3,4
		Capacitor bank alarm*	5,6
		Capacitor bank – Stage 2 indication *	7,8
		Transformer temp. – Stage 1 alarm *	9,10
		Transformer temp. – Stage 2 alarm *	11, 12
		Permission to start capacitor sequence *	13, 18
		Capacitor bank – Stage 1 indication *	14, 15
	\boxtimes	Permission to close 11 kV **	16, 17
		Capacitor circuit breaker position *	19, 20
		Capacitor bank – Stage 3 indication *	21, 22
		Ground monitoring relay *	23, 24

* Optional

** Part of safety circuit

Note: All capacitor related control signals are not available from HVSC system.

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:		Doc No:	01.00.20
PROJECT.	PSW Project no. 229741/5284	229741-528 4	-E-KA-0005
GAR-H001 – 16MVA HVSC			

Which control signals are supported by the 110VDC connector:

Ship:	HVSC:		Pins:
	\mathbf{X}	Permission to close 6,6 kV **	1, 2
	\mathbf{X}	Emergency stop **	3,4
	\mathbf{X}	Circuit breaker trip 6,6 kV **	5,6
	\mathbf{X}	Shore ground indication	7,8
	\mathbf{X}	Frequency setting	9, 10
	\boxtimes	Reduce power warning	11, 12
	\boxtimes	Expected shutdown warning	11, 13
	\mathbf{X}	Circuit breaker trip 11 kV **	14, 15
	\mathbf{X}	Permission to close 11 kV **	16, 17
** Part	of safet	y circuit	

Are the ship and HVSC system safety circuits compatible?

□ Yes □ No

The HVSC system failsafe uses a safety PLC to manage and control all safety related input and outputs. All safety relate I/O's functions are tested and verified.

4.9. Earthing

 \Box The ship is providing sufficient earthing between ship and shore with a value of Ω

4.9.1. Ship earth fault

When the ship is connected to a HVSC system, is the earth fault setting different from normal settings and are there means to change settings:

□ Yes □ No

Ship earth fault setting at normal and HVSC operation condition: Normal operation: A

HVSC operation: A

CUSTOMER:	PO no.	Project no.	Date:
HAVNEKRAFT AS	229741	5284	31.05.23
	1	1	
PROJECT:	PSW Project no.	Doc No:	
	229741/5284	229741-5284-E	-KA-0005
GAR-H001 – 16MVA HVSC			

4.9.2. Transformer neutral earthing

The neutral connection from the shore power is provided from a 156 kVA earthing transformer (Zig-Zag) through a 540 Ω neutral earthing resistor.

4.9.3. Functioning of ship earth fault protection, monitoring and alarms when connected to a HVSC supply

Downstream current earth fault trip: 2 AUpstream current earth fault trip: 2 AEarth fault trip time: 1 sec

(Applies to both 11 kV and 6.6 kV nominal voltage)

4.10. Cable management

The cable length needed from shore to ship should include the maximum moveable range of the ship from the quay side:

Max: m Min: m

Are the power cables coiled up during operation:

🛛 Yes 🛛 🗆 No

Any derating from cable coiling:

□ Yes ⊠ No □ N/A Derating from other cable management related aspects:

CUSTOMER: HAVNEKRAFT AS	PO no. 229741	Project no. 5284	Date: 31.05.23
PROJECT:	PSW Project no. 229741/5284	Doc No: 229741-5284-E-KA-0005	

GAR-H001 – 16MVA HVSC

4.10.1. Cable tension monitoring

Ship and shore maximum cable tension limit:

Ship must provide a cable tension monitoring system.

□ Shore must provide a cable tension monitoring system.

Ship and/or shore must provide a cable tension monitoring system.

4.10.2. Needed Cable length onboard – from hatch to shipside sockets

Power cables		
Neutral cable		
Control cables		

CUSTOMER:	PO no.	Project no.	Date:
HAVNEKRAFT AS	229741	5284	31.05.23
PROJECT:	PSW Project no.	Doc No:	
	229741/5284	229741-5284	-E-KA-0005
GAR-H001 – 16MVA HVSC			

4.11. Galvanic isolation

HVSC transformers ensures galvanic isolation between each connected ship. The isolation also prevents electrochemical corrosion.

 \Box Ship has a galvanic isolation transformer

4.12.Bonding monitoring

The HVSC system has continuous monitoring of the bonding as part of the safety system, as required for cruise ships.

4.13. Location and construction

Each container is locked to prevent unauthorized personnel from gaining access to the HVSC equipment.

4.14. Hazardous areas

The HVSC system is permanently installed